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Free vibration of axially inhomogeneous beams is analyzed. For exponentially graded beams with various
end conditions, characteristic equations are derived in closed form. These characteristic or frequency
equations can analytically reduce to the classical forms of Euler–Bernoulli beams if the gradient index
disappears. The gradient has a strong influence on the frequency spectrum, and the natural frequencies
noticeably depend on the variation of the gradient parameter and end support conditions. For certain
beams with exponential gradients, there exists a critical frequency depending on the gradient parameter.
Vibration can be only excited by propagating waves with frequencies in excess of the critical frequency,
and otherwise vibration is prohibited for pseudo-frequencies lower than the critical frequency. For some
gradient index with small change, the natural frequencies have an abrupt jump when across its critical
frequencies. Obtained results can serve as a benchmark for other numerical procedures for analyzing
transverse vibration of axially functionally graded beams. The minimal natural frequency can be sought
for certain gradient index, and this helps engineers to optimally design vibrating nonhomogeneous beam
structures. Obtained results also apply to free vibration of nonuniform beams with constant thickness
and exponentially decaying width.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Functionally graded beams have attracted increasing attention
of researchers in recent years. The material properties of function-
ally graded beams vary along the thickness direction or/and the
length direction. For functionally graded beams with thickness-
wise gradient variation, great progress has been made. For
example, Sankar [1] made a static analysis of thickness-wise expo-
nentially graded beams with pinned–pinned ends according to
two-dimensional elasticity model and one-dimensional Euler–
Bernoulli beam model. Zhong and Yu [2] formulated an analytical
solution of a static cantilever functionally graded beam with the
assumption that all the elastic moduli of the material have the same
variations along the beam-thickness direction. Later, the static
analysis was further extended to anisotropic functionally graded
beams by Ding et al. [3]. Using the discrete quadrature method,
Lu et al. [4] presented a semi-analytical elasticity solution for static
problems of bidirectional functionally graded beams with exponen-
tial gradient distribution within the framework of two-dimensional
elasticity theory. For the case of power-law nonlinear constitutive
relations, the exact deflection of transverse bending of cantilevered
functionally graded beams under small and large deformation has
ll rights reserved.
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been obtained under different applied loads [5,6]. In certain
situations, dynamic analysis of functionally graded beams is of
much interest. Aydogdu and Taskin [7] investigated free vibration
of simply-supported functionally graded beams where Young’s
modulus vary in the thickness direction according to power law
and exponential law. When neglecting axial force and correspond-
ing longitudinal stretching, Li [8] presented a new unified approach
for analyzing transverse bending and dynamic behaviors of
functionally graded beams with rotary inertia and shear deforma-
tion included. Sina et al. [9] also used Hamilton’s principle to obtain
the natural frequencies and mode shapes of functionally graded
beams. Simsek [10] employed different higher-order beam theories
to compute the fundamental frequencies. For a functionally graded
beam with circular cross-section of arbitrary radial gradient, Huang
and Li [11] established a high-order theory of beams including
shear deformation and rotary inertia where traction-free surface
condition is identically met. Based on a three-dimensional theory,
Kang and Leissa [12] gave a vibration analysis of thick, tapered rods
and beams with circular cross-section.

For functionally graded beams with axially varying material
properties, related researches are quite limited. Elishakoff and
co-workers have made a great deal of work on finding the exact
solutions of fundamental frequency for a majority of beams with
various end supports via using the semi-inverse method [13].
The semi-inverse method can give a closed-form solution, but it
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Fig. 1. Schematic of an axially functionally graded beam.
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is only applicable for specific bending stiffness and mass density
like some special polynomials. In particular, it is inconvenient for
determining higher-order natural frequencies. Huang and Li [14]
studied free vibration of axially graded beams with any gradient
variation by using the integral equation method. It is worth noting
that the proposed method for seeking the natural frequencies is
approximate, not exact. Murin et al. [15] formulated a method
for dealing with the natural frequencies of beams of varying mate-
rial properties. Shahba et al. [16] coped with free vibration and sta-
bility analysis of axially functionally graded tapered Timoshenko
beams with classical and non-classical boundary conditions via fi-
nite element method. Li et al. [17] gave an optimization of axially
graded beams against buckling. Chakrabarti et al. [18] studied large
amplitude free vibration of a rotating nonhomogeneous beam with
nonlinear spring and mass system.

As we know, in many cases, analytical solutions in closed-form
are desired for accurate analysis and design due to their many
advantages over numerical and approximate solutions. Moreover,
analytical solutions can serve as a benchmark for the purpose of
judging the accuracy and efficiency of various numerical and
approximate approaches. However, owing to the mathematical
complexity, certain practical problems are only solved with re-
course to numerical and approximate schemes.

This paper presents an analytic treatment of the free vibration
of axially exponentially graded beams. The frequency equations
of beams with various end conditions are derived in closed form.
For inhomogeneous beams, we find an essential difference from
homogeneous beams. For certain beams with exponential gradient,
vibration of the beams cannot take place in frequencies lower than
a critical value. Only when frequencies exceed the critical value,
harmonic vibration occurs.
2. Basic equations

Consider a beam of varying cross section or made of axially
graded materials. The beam length is denoted as L, and the axial
direction is denoted as x with the origin at the end x = 0, as shown
in Fig. 1. The bending stiffness and the distributed mass are also
dependent on the axial coordinate x. For simplicity, we assume

EI ¼ De2bx=L; qA ¼ me2bx=L; ð1Þ

where b is the dimensionless gradient parameter, EI is varying
bending stiffness and D is a reference value of EI at x = 0, qA is dis-
tributed mass per unit length and m is a reference value of qA at
x = 0. Here I is the second-order moment of cross-sectional area, A
the cross-sectional area, E Young’s modulus, and q the mass density,
respectively. Notice that as x is raised, b > 0 indicates that EI and qA
increase, and b < 0 indicates EI and qA decrease, respectively.
For a beam with varying cross section, the above assumption
corresponds to the cross section possessing exponentially varying
width and constant thickness, while for an axially graded beam,
the assumption means that the material properties have exponen-
tial gradient. For such beams with material properties described by
(1), the differential equation that governs the transverse vibration
of the beams reads

@2

@x2 De2bx=L @
2w
@x2

" #
þme2bx=L @

2w
@t2 ¼ 0; 0 < x < L: ð2Þ

When the beam undergoes transverse vibration, one may take w in
the form

wðx; tÞ ¼WðxÞ sinxt; ð3Þ

where W(x) is the amplitude of vibration, and x is the circular fre-
quency of vibration. After plugging the above expression into (2),
one gets

@2

@x2 De2bx=L @
2W
@x2

" #
�mx2L4e2bx=LW ¼ 0: ð4Þ

Hereafter, we still use notation @ðÞ=@x to stand for dðÞ=dx without
confusion.

In the present paper, emphasis is placed on the effect of the gra-
dient index b on the natural frequencies of the transverse vibra-
tion. As will be seen below, some new features can be found in
the light of the appearance of gradient variation. For convenience
of later analysis let us introduce dimensionless quantities

n ¼ x
L
; X ¼ xL2

ffiffiffiffiffi
m
D

r
: ð5Þ

Thus Eq. (4) can be rewritten as

@2

@n2 e2bn @
2W

@n2

" #
�X2e2bnW ¼ 0: ð6Þ

With W(x) at hand, the bending moment M and shear force Q at
any cross section are given respectively in terms of the introduced
dimensionless variables by

M ¼ �De2bn

L2

@2W

@n2 ; ð7Þ

Q ¼ � @

@n
De2bn

L3

@2W

@n2

 !
: ð8Þ
3. Free vibration

In order to obtain a nontrivial solution of the above Eq. (6), it is
expedient to suppose that W takes the form
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WðnÞ ¼ Cekn; ð9Þ

where k and C are two unknown constants. After substituting the
above expression for W into (6), we get

k2ðkþ 2bÞ2 �X2
h i

C ¼ 0: ð10Þ

Due to C being a non-vanishing constant, we get k2(k + 2b)2

�X2 = 0, and then four possible roots, called characteristic values,
can be easily obtained by directly solving the above equation, i.e.

k1;3 ¼ �b� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X� b2

q
; k2;4 ¼ �b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þX

q
; if X > b2; ð11Þ

or

k1;3 ¼ �b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 �X

q
; k2;4 ¼ �b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þX

q
; if X 6 b2: ð12Þ

If denoting

d1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X� b2

q
; if X > b2;

0; if X ¼ b2;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 �X

q
; if X < b2;

8>><
>>: d2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xþ b2

q
; ð13Þ

we obtain possible expressions for the mode shape taking the fol-
lowing form for individual cases

WðnÞ ¼ e�bn½C1 cosðd1nÞ þ C2 sinðd1nÞ þ C3 coshðd2nÞ
þ C4 sinhðd2nÞ�; if X > b2; ð14Þ

WðnÞ ¼ e�bn½C1 þ C2nþ C3 coshðd2nÞ þ C4 sinhðd2nÞ�; if X

¼ b2; ð15Þ

WðnÞ ¼ e�bn½C1 coshðd1nÞ þ C2 sinhðd1nÞ þ C3 coshðd2nÞ
þ C4 sinhðd2nÞ�; if X < b2: ð16Þ

From the above, an important conclusion can be implied. That is,
if frequencies are lower enough such that X 6 b2, we find that ob-
tained four roots are all real. This indicates that the mode shape
of vibration W is not harmonic. In other words, such vibration
modes given by (15) and (16) do not correspond to propagating
waves, but represent nonpropagating fields or evanescent compo-
nents. Therefore, according to the usual convention, such values
have no realistic physical meanings. The lowest value, b2, is referred
to as the dimensionless critical frequency Xcr = b2. Once the fre-
quency exceeds the critical value, propagating waves can be excited
and harmonic vibration is then induced. On contrary, if the fre-
quency is less than the critical frequency, propagating waves can-
not be excited and harmonic vibration of the beams is impossible.
This is easily understood since for the former, the corresponding
characteristic vector is a trigonometric function which must vanish
at one or more certain positions at the beam. For the latter case,
nevertheless, the corresponding characteristic vector never van-
ishes at any position of the beam since it is an exponential function
related to a nonpropagating fields or evanescent components
although their combination may vanish at certain positions like
end(s). This is an essential difference between propagating and
nonpropagating waves when the frequency crosses the critical fre-
quency. Although some characteristic values of X lower than or
equal to b2 can be calculated, due to the reason stated above these
characteristic values are called pseudo-frequencies. It is worth not-
ing that a theoretical analysis of exponential mode of vibration of
beams can be made [19]. Nevertheless, in what follows we only re-
strict our attention to the case where the frequencies are above the
critical frequency, meaning that the characteristic values are given
by (11) or equivalently, harmonic vibration may be excited.

Next, we consider several typical free vibration of exponentially
graded beams. To this end, we express the amplitude W, rotation
@W/@n, bending moment M, and shear force Q in terms of the
dimensionless variables

W ¼ e�bn½A1;A2;A3;A4�V; ð17Þ

@W
@n
¼ e�bn½d1A2 � bA1;�ðd1A1 þ bA2Þ; d2A4 � bA3; d2A3 � bA4�V;

ð18Þ

M ¼ �Debn

L2 �2bd1A2 þ b2 � d2
1

� �
A1;2bd1A1

�
þ b2 � d2

1

� �
A2;�2bd2A4 þ b2 þ d2

2

� �
A3;

�2bd2A3 þ b2 þ d2
2

� �
A4
�
V; ð19Þ

Q ¼ �X2Debn

L3 ½bA1 � d1A2; d1A1 þ bA2; d2A4 � bA3; d2A3 � bA4�V;

ð20Þ

where Aj and Bj are non-vanishing constants, and

V ¼ ½cos d1n; sin d1n; cosh d2n; sinh d2n�T : ð21Þ

In the above, the superscript T specifies the transpose of a vector or
matrix.

To determine the natural frequencies of exponentially graded
beams, four independent algebraic equations are needed. These
equations can be furnished by using the boundary conditions at
end supports.

4. Frequency equations

In this section, we will consider several typical end supports of a
beam and derive their frequency equations. Furthermore, the nat-
ural frequencies are evaluated and mode shapes are given.

4.1. Pinned–pinned beams

Firstly, let us consider pinned–pinned beams or simply-
supported beams and the associated boundary conditions read

Wð0Þ ¼ 0; Mð0Þ ¼ 0; ð22Þ

Wð1Þ ¼ 0; Mð1Þ ¼ 0: ð23Þ

Using these conditions, from (17) and (19) we get the following
equations

A1 þ A3 ¼ 0; ð24Þ

�2bd1A2 þ b2 � d2
1

� �
A1 � 2bd2A4 þ b2 þ d2

2

� �
A3 ¼ 0; ð25Þ

½A1;A2;A3;A4�Vð1Þ ¼ 0; ð26Þ

�2bd1A2þ b2�d2
1

� �
A1;2bd1A1þ b2�d2

1

� �
A2;�2bd2A4þ b2þd2

2

� �
A3;

�
�2bd2A3þ b2þd2

2

� �
A4
�
Vð1Þ¼0; ð27Þ

where

Vð1Þ ¼ ½cos d1; sin d1; cosh d2; sinh d2�T : ð28Þ

Hence, we obtain a system of linear equations in Aj (j = 1, 2, 3, 4).
Since this system has a nontrivial solution, the determinant of the
coefficient matrix of this system has to vanish, which finally simpli-
fies to

2b2d1d2ð1� cosh d2 cos d1Þ þ ð2b4 �X2Þ sinh d2 sin d1 ¼ 0: ð29Þ

This is an exact characteristic equation or frequency equation of
pinned–pinned beams with exponentially varying bending stiffness
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and distributed mass (1). In the above equation, if setting b = 0 one
further gets

sin
ffiffiffiffi
X
p
¼ 0; ð30Þ

which is identical to the characteristic equation for simply-
supported beams of uniform cross section and homogeneous
materials [20], as expected.

4.2. Clamped–clamped beams

Here, let us turn our attention to clamped–clamped beams and
the associated boundary conditions read

Wð0Þ ¼ 0;
@W
@n

����
n¼0
¼ 0; ð31Þ

Wð1Þ ¼ 0;
@W
@n

����
n¼1
¼ 0: ð32Þ

Using these conditions, from (17)–(20) we get the following
equations

A1 þ A3 ¼ 0; ð33Þ

d1A2 � bA1 þ d2A4 � bA3 ¼ 0; ð34Þ

½A1;A2;A3;A4�Vð1Þ ¼ 0; ð35Þ

½d1A2 � bA1;�ðd1A1 þ bA2Þ; d2A4 � bA3; d2A3 � bA4�Vð1Þ ¼ 0: ð36Þ

Hence, we also obtain a system of linear equations in Aj (j = 1, 2, 3,
4). Since this system has a nontrivial solution, the determinant of
the coefficient matrix of this system has to vanish, which finally
simplifies to

d1d2ð1� cosh d2 cos d1Þ þ b2 sinh d2 sin d1 ¼ 0: ð37Þ

This is an exact characteristic or frequency equation of clamped–
clamped beams with exponentially varying bending stiffness and
distributed mass (1). In the above equation, if setting b = 0 one fur-
ther gets

1� cos
ffiffiffiffi
X
p

cosh
ffiffiffiffi
X
p
¼ 0; ð38Þ

which is identical to the characteristic equation for clamped–
clamped beams of uniform cross section and homogeneous beams
[20], as expected.

4.3. Clamped–free beams

For clamped–free beams, the associated boundary conditions
read

Wð0Þ ¼ 0;
@W
@n

����
n¼0
¼ 0; ð39Þ

Mð1Þ ¼ 0; Qð1Þ ¼ 0: ð40Þ

Using these conditions, from (17)–(20) we get the following
equations

A1 þ A3 ¼ 0; ð41Þ

d1A2 � bA1 þ d2A4 � bA3 ¼ 0; ð42Þ

�2bd1A2 þ b2 � d2
1

� �
A1;2bd1A1 þ b2 � d2

1

� �
A2;�2bd2A4

�
þ b2 þ d2

2

� �
A3;�2bd2A3 þ b2 þ d2

2

� �
A4
�
Vð1Þ ¼ 0; ð43Þ

½bA1 � d1A2; d1A1 þ bA2; d2A4 � bA3; d2A3 � bA4�Vð1Þ ¼ 0: ð44Þ
Hence, we obtain a system of linear equations in Aj (j = 1, 2, 3, 4).
Since this system has a nontrivial solution, the determinant of the
coefficient matrix of this system has to vanish, which finally simpli-
fies to

d1d2 þ d2ðd1 cos d1 � 2b sin d1Þ cosh d2

� bð2d1 cos d1 � 3b sin d1Þ sinh d2 ¼ 0: ð45Þ

This is an exact characteristic or frequency equation of the cantile-
vers with exponentially varying bending stiffness and distributed
mass (1). In the above equation, if setting b = 0 one further gets

1þ cos
ffiffiffiffi
X
p

cosh
ffiffiffiffi
X
p
¼ 0; ð46Þ

which is identical to the characteristic equation for uniform homo-
geneous beams with clamped–free ends [20], as expected.

For other end conditions we can similarly derive frequency
equations. For saving spaces, we omit the details of the derivation
and the final results are listed in Table 1. It is worth noting that for
nonuniform Euler–Bernoulli beams with exponential bending stiff-
ness and mass density or equivalently with constant thickness and
exponentially decaying width, the frequency equations for three
cases: pinned–pinned beams, clamped–clamped beams, and
clamped–free beams, have been derived in [21–24]. In particular,
it is found that our frequency equation for clamped-free beams is
inconsistent with previous works [23,24]. The reason is that the
free end conditions in (40) we used here are different from those
in [23]. Recently, Wang and Wang [25] treated the free vibration
of a cantilever beam with constant thickness and exponentially
decaying width carrying a tip mass. For other end supports, the fre-
quency equations were not reported, to the best of the authors’
knowledge. From Table 1, we can find that three pairs of the char-
acteristic equations are the same. They are those for clamped–
clamped beams versus free–free beams, clamped–guided beams
versus guided–free beams, clamped–pinned beams versus pin-
ned–free beams. If imposing b = 0, the characteristic equations in
Table 1 reduce to those for uniform beams made of homogeneous
materials [20].

5. Natural frequencies and mode shapes

Since the explicit characteristic equations have been presented
in Table 1 for various frequently-encountered cases, it is a very
simple matter to obtain numerical natural frequencies by solving
the above-obtained characteristic equations with the aid of com-
mercial software. However, it is particularly pointed out that for
certain exponential gradient parameter b, calculated values of the
dimensionless natural frequencies are possibly less than the
dimensionless critical frequency Xcr = b2. This directly gives rise
to the mode shapes being an exponential function or equivalently
hyperbolic function rather than a trigonometric function, and it
then does not correspond to harmonic vibration excited by propa-
gating waves. As a consequence, the natural frequencies to be
determined are always larger than the critical frequency.

Fig. 2 shows the effects of the gradient parameter b on the nat-
ural frequency parameter

ffiffiffiffi
X
p

. In Fig. 2, the first four natural fre-
quency parameter curves are plotted. From Fig. 2, it is found that
all the frequency curves are discontinuous. For example, the funda-
mental frequency parameter

ffiffiffiffiffiffi
X1
p

displayed in solid lines is seen to
decline with b rising, reaching a minimum critical value aboutffiffiffiffiffiffi

X1
p

¼ 1:2, and then jumps up to the curve above and next to this
curve since the frequency computed from this curve disappears.
This is attributed to the fact of X2

1 < b. Due to this reason, the ori-
ginal second natural frequency is then converted to the fundamen-
tal frequency. Similarly, with b increasing, the frequency
parameter

ffiffiffiffiffiffi
X1
p

further reduces to fall into the shadow region of
X2

1 < b again as b is larger than 3.2. Since the fundamental



Table 1
Characteristic equations for various beams.

Boundary
conditions

Characteristic equations

C–C d1d2 (1 � coshd2 cosd1) + b2 sinhd2 sind1 = 0
P–P 2b2d1d2 (1 � coshd2 cosd1) + (2b4 �X2) sinhd2 sind1 = 0
G–G sind1 = 0
F–F d1d2 (1 � coshd2 cosd1) + b2 sinhd2 sind1 = 0
C–F (or F–C) d1d2 (1 + coshd2 cosd1) � 2b

(d1 sinhd2 cosd1 + d2 coshd2 sind1) + 3b2 sinhd2 sind1 = 0
C–P (or P–C) 2bd1d2 (1 � coshd2 cosd1) + X

(d1 sinhd2 cosd1 � d2 coshd2 sind1) + 2b3 sinhd2 sind1 = 0
C–G (or G–C) d1 sinhd2 cosd1 + d2 coshd2 sind1 � 2bsinhd2 sind1 = 0
P–F (or F–P) 2bd1d2 (1 � coshd2 cosd1) + X

(d1 sinhd2 cosd1 � d2 coshd2 sind1) + 2b3 sinhd2 sind1 = 0
P–G (or P–G) d1d2 coshd2 cosd1 � b2 sinhd2 sind1 = 0
G–F (or F–G) d1 sinhd2 cosd1 + d2 coshd2 sind1 � 2bsinhd2 sind1 = 0

Remark: C: clamped; P: pinned; G: guided; F: free.

Fig. 2. Effects of the gradient parameter b on the natural frequency parameter
ffiffiffiffiffiffi
Xn
p

for cantilevered beams.

Fig. 3. Effects of the gradient parameter b on the natural frequency parameter
ffiffiffiffiffiffi
Xn
p

for clamped beams.

Fig. 4. Effects of the gradient parameter b on the natural frequency parameter
ffiffiffiffiffiffi
Xn
p

for simply-supported beams.

Fig. 5. Effects of the gradient parameter b on the natural frequency parameter
ffiffiffiffiffiffi
Xn
p

for clamped–pinned beams.

Fig. 6. The fundamental frequency parameter
ffiffiffiffiffiffi
X1
p

versus the gradient parameter b
for various beams: (1) Clamped–free beams. (2) Pinned–guided beams. (3)
Clamped–guided or guided–free beams. (4) Pinned–pinned beams. (5) Guided–
guided beams. (6) Clamped–pinned or pinned–free beams. (7) Clamped–clamped or
free–free beams.
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frequency parameter exhibits a jump behavior, the frequency
parameter in other vibration modes also exhibits this feature, as
seen in Fig. 2. When across certain b values, the original nth natural
frequency becomes the (n � 1)th frequency. Such phenomena can



Table 2
Comparison of the dimensionless frequencies for a cantilever with exponential width variation.

�b Present results [25] [23] [24] [27] [22] [21]

0.5 4.73491 4.7349 4.72298 4.723 4.7347 4.735 4.5
24.20181 24.202 24.20168 24.2017 24.2005 24.20 24.7
63.86449 63.865 63.86448 63.8645 63.8608 63.85
123.09791 123.10 123.09790 123.098 123.091
202.06877 202.07 202.06870

1 6.26264 2.2626 6.2588
26.58359 26.584 26.584
66.3745 66.375 66.374
125.68472 125.69 125.68
204.69531 204.70 204.70

Table 3
Dimensionless natural frequencies for a beam with exponential width variation, where those with asterisk specify pseudo-natural frequencies.

�b CC PP CF FC CP PC

1 22.93773 9.48725 6.26264 1.84057 17.72026 13.34399
62.42273 39.85232 26.58359 18.17212 52.52681 48.52769

121.72273 89.40520 66.37450 58.38869 106.94600 102.94689
200.71861 158.59689 125.68472 117.69217 181.03931 177.04168
299.44014 247.48629 204.69531 196.70225 274.84490 270.84708

2 24.78955 8.41048 10.38723 0.90540⁄ 20.77798 11.18278
64.70943 41.07056 32.15518 14.69432 56.29444 48.26067

124.19583 91.17958 72.44786 56.50336 111.06221 103.07492
203.30351 160.66459 132.03276 116.09870 185.35554 177.37515
302.09813 249.73472 211.19719 195.25326 279.28915 271.30688

3 28.29800 6.84305* 16.12268 0.42329⁄ 25.17737 8.87227⁄
68.63196 43.41110 39.03758 11.43261 61.42695 49.36407

128.36481 94.25763 79.98808 56.21351 116.65731 104.71761
207.63541 164.16870 139.96462 116.20441 191.24525 179.31557
306.54165 253.51409 219.36758 195.56056 285.37673 273.43795
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be explained as follows. For example, for b = 5, since d1 in V in (21)
is not real, but imaginary for

ffiffiffiffi
X
p

< 5, and so the fundamental fre-
quency must be sought in

ffiffiffiffi
X
p

> 5. Therefore, in Fig. 2 the fre-
quency parameter curves are seen to jump or discontinuous. For
those falling in

ffiffiffiffi
X
p

< b, the beam does not give rise to harmonic
vibration, which occurs only for

ffiffiffiffi
X
p

> b. This phenomenon is anal-
ogous to the second frequency spectrum of Timoshenko beams,
which only exhibits the behavior of harmonic vibration for the fre-
quency in excess of the corresponding critical frequency and pos-
sesses a nonpropagating field for the frequency below the
corresponding critical frequency [26]. However, the first frequency
spectrum of Timoshenko beams and the unique frequency spec-
trum of Euler–Bernoulli beams always correspond to the behavior
of harmonic vibration. Here, for inhomogeneous Euler–Bernoulli
beams only having the unique frequency spectrum, the phenome-
non that Euler–Bernoulli beams have a nonpropagating field was
not reported before. From Fig. 2, it is also viewed that for exponen-
tially graded beams, we can find an optimal gradient index such
that the fundamental frequencies reach minimum.

For other several typical cases, Figs. 3–5 display the effects of
the gradient index b on the natural frequency parameter

ffiffiffiffi
X
p

. It is
easily viewed that the frequency parameter curves for clamped–
clamped and pinned–pinned beams in Figs. 3 and 4 are symmetric.
This is readily understood since the boundary conditions of two
ends are the same for the two cases. Moreover, for clamped–
clamped beams, the frequency curves are continuous, not discon-
tinuous. For pinned–pinned beams and clamped–pinned beams,
the frequency curves with a jump behavior still appear, similar
to that observed in Fig. 2. A sole difference is that there is only a
position at which the frequency jumps for pinned–pinned beams
and clamped–pinned beams, while there are two jump locations
for clamped–free beams. For other end supports of interest to us,
the fundamental frequency parameter
ffiffiffiffi
X
p

as a function of the gra-
dient index b is illustrated in Fig. 6. The frequency jump phenom-
enon occurs in most cases, and the frequency curves after jump are
not depicted in Fig. 6.

We calculate the normalized natural frequencies of a cantilever
beam with exponential bending stiffness and mass density, which
corresponds a nonuniform cantilever beam with constant thick-
ness and exponentially decaying width. For the latter case, exact
results were derived by some researchers. A comparison of the nor-
malized natural frequencies is made in Table 2. Obviously, it is
found that our results are in agreement with existing natural fre-
quencies. We also evaluate natural frequencies for four representa-
tive cases: clamped beams, simply-supported beams, cantilever
beams, and clamped–pinned beams, and the obtained results are
tabulated in Table 3 for several different values of b. Note that
the beams with CF and FC boundary conditions in Table 3 stand
for cantilever beams, where the first letter corresponds to the con-
dition at the end x = 0 and the second to the end x = L, respectively.
We see that for the PP beams, FC beams and PC beams with b = 3,
the first characteristic value is less than b2, and they are given in
Table 3 with asterisk. In Figs. 2, 4 and 5, the corresponding fre-
quency parameter curves fall in the shadow region, and associated
vibration modes are dominated by (16). Since they correspond to
nonpropagating fields, the natural frequencies are pseudo-natural
frequencies. If neglecting these pseudo-natural frequencies, the
fundamental frequencies are given by the second characteristic va-
lue or the first characteristic value larger than b2.

Furthermore, the first four mode shapes of exponentially graded
beams are presented in Fig. 7. Here for convenience, the mode
shapes in (17) multiplying by the factor ebx/L have been plotted in
these figures. Moreover, we do not normalize the mode shapes,
but normalize the characteristic vector A = [A1, A2, A3, A4] with



(a)

(b)

Fig. 7. The first four mode shapes, W(x/L)ebx/L, versus x/L for exponentially graded
beams with b = 1, 0, � 1: (a) clamped–free beams and (b) pinned–pinned beams.

(a)

(b)

(c)

Fig. 8. The first two mode shapes, W(x/L)ebx/L, versus x/L for exponentially graded
cantilevers with: (a) b = 0, (b) b = 2, and (c) b = 5.
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kAk = 1. It is observed from Fig. 7 that the material gradient has a
strong influence on the first mode shape and the effect becomes
smaller for higher-order vibration modes. It implies that the non-
propagating components of bending waves corresponding to the
terms related to the hyperbolic functions in (17) play a significant
role in determining the amplitude of the lower-order vibration
mode, while their effects are gradually weak with the mode num-
ber increasing. Due to this reason, with an increase in b, the effects
of the propagating components of bending waves gradually be-
come smaller and smaller, and finally the propagating components
convert to nonpropagating components. Thus it gives rise to occur-
rence of the jump of the frequencies across which the trigonomet-
ric functions in (17) are guaranteed to avoid the appearance of the
hyperbolic functions. This is also observed from Fig. 8 which dis-
plays the first two mode shapes of exponentially graded cantilever
beams for three different values of b = 0, 2, 5. Notice that for b = 2,
since the original fundamental frequency

ffiffiffiffiffiffi
X1
p

< 2, which causes a
non-harmonic vibration, the fundamental frequency then jumps
up to the second frequency curve, as seen in Fig. 2, and the corre-
sponding vibration shapes are dominated by propagating waves or
harmonic vibration. For b = 5, since the fundamental frequency
jumps twice, the vibration shape in mode 1 in Fig. 8c is seen to
be similar to that in mode 3 in Fig. 7a. Consequently, thanks to this
reason, the vibration shapes of mode 1 for b = 0, 2, 5 in fact are
completely different, as viewed in Fig. 8. In contrast, the vibration
shape of mode 1 for b = 2 is similar to that of mode 2 for b = 0,
while the vibration shape of mode 1 for b = 5 is similar to that of
mode 3 for b = 0 and of mode 2 for b = 2. This is attributed to the
occurrence of the frequency jump phenomenon.
6. Conclusions

The free vibration of axially functionally graded beams was
studied. For axially exponentially graded beams, closed-form char-
acteristic equations have been derived for frequently-encountered
end conditions. These characteristic equations reduce to the
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well-known characteristic equations if the gradient disappears. In
particular, it is found that for certain graded beams, the natural
frequencies jump when across its critical value and the natural fre-
quencies lower than the critical value become pseudo-frequencies.
Only when bending waves with frequencies exceeding the critical
value, harmonic vibration can be excited. This is an essential differ-
ence between homogeneous and inhomogeneous beams. For
certain inhomogeneous beams, this feature helps us to seek a
minimal natural frequency for achieving optimal design of expo-
nentially graded beams. All the results obtained apply to nonuni-
form beams with constant thickness and exponentially decaying
width. The results of the present paper may serve as a benchmark
for other numerical procedures for analyzing free vibration of axi-
ally functionally graded beams as well as nonuniform beams.
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