1-MHz ultrasound enhances internal diffusivity in agarose gels

Authors: Akira Tsukamoto, Kei Tanaka, Tatsuya Kumata, Kenji Yoshida, Yoshiaki Watanabe, Shogo Miyata, Katsuko S. Furukawa, Takashi Ushida

Abstract:
Ultrasound sonification stimulates the release of pharmaceutical compounds from hydrogels. At the surface of hydrogels, cavitation, cavities formed in liquid, activates to stimulate that release under low-frequency ultrasound. Under high-frequency ultrasound, although cavitation activities are highly suppressed, the compounds are still released. Although it remains elusive how high-frequency ultrasound stimulates this release, one hypothesis is that the internal diffusivity is enhanced. In this study, internal diffusivities in agarose gels were estimated with fluorescent recovery after photobleaching (FRAP) analysis. Under 1-MHz ultrasound sonification, internal diffusivity in agarose gels was enhanced. The enhancement of internal diffusivity was larger than that with temperature elevation alone, although temperature elevation was also observed along with the ultrasound sonification. Thus, we found that high-frequency ultrasound sonification enhances internal diffusivity in agarose gels. This enhancement was, at least in part, independent of temperature elevation.

Keywords:
High-frequency ultrasound
Internal diffusivity
FRAP analysis
Agarose gel
FITC-dextran
Temperature elevation

Published in: Applied Acoustics (Volume 74, Issue 10, October  2013)

Publisher: Elsevier

ISSN Information: 0003-682X

1-MHz ultrasound enhances internal diffusivity in agarose gels

Bình luận của bạn
*
*
*
*
 Captcha

Logo Bottom

Địa chỉ: 268 Lý Thường Kiệt, P.14, Q.10, TP.HCM           Tel: 38647256 ext. 5419, 5420           Email: thuvien@hcmut.edu.vn

© Copyright 2018 Thư viện Đại học Bách khoa Tp.Hồ Chí Minh 

Thiết kế website Webso.vn