Acoustic horns optimization using finite elements and genetic algorithm

Authors: Renato Barbieri, Nilson Barbieri

Abstract:
In this work the optimization of shape (geometry) of acoustic horns is analyzed. The finite element method is employed for calculating the sound pressure and optimization methods of zero order (Golden Line Search Method and Genetic Algorithm, GA) are used to obtain the optimal geometry. The shape of the horn is approximated locally using polynomials with C1 continuity with the objective to get a few design variables, to obtain smooth contours at each iteration and to eliminate the regularization of the common mesh in this type of optimization. It was also studied the influence of the size of the domain (environment) in the optimized geometry of the horn. The numerical results show the efficiency of this approach and it was also found (at least from the engineering point of view) that the solution is not unique to the geometry of the horn to single-frequency.

Keywords:
Acoustic horn
Shape optimization
Finite elements
Genetic algorithm

Published in: Applied Acoustics (Volume 74, Issue 3, March  2013)

Publisher: Elsevier

ISSN Information: 0003-682X

Acoustic horns optimization using finite elements and genetic algorithm

Bình luận của bạn
*
*
*
*
 Captcha

Logo Bottom

Địa chỉ: 268 Lý Thường Kiệt, P.14, Q.10, TP.HCM           Tel: 38647256 ext. 5419, 5420           Email: thuvien@hcmut.edu.vn

© Copyright 2018 Thư viện Đại học Bách khoa Tp.Hồ Chí Minh 

Thiết kế website Webso.vn