Challenges in the aerodynamics modeling of an oscillating and translating airfoil at large incidence angles

Authors: Mehdi Ghoreyshi, Russell M. Cummings

Abstract:
The challenges in the modeling of the unsteady lift of a two-dimensional NACA 0012 airfoil oscillating and translating at large incidence angles are investigated in this paper. Forced oscillation motions with two reduced frequency values of 0.1 and 1.0 were used. The CFD results show that a hysteresis loop was developed in the lift variation with angle of attack; shapes of the loops change significantly with reduced frequency value. A dynamic stall vortex was identified in the pitching and plunging motions with k = 0.1. This vortex delays the onset of flow separation over the upper surface to a higher incidence than would occur in steady conditions. The unsteady lift of the very fast motion is enhanced significantly due to the formation of a compression wave on the lower surface and an expansion wave on the upper surface. The results show clear limitations of unsteady aerodynamic theories for modeling motions at high incidences. Also, the CFD solution of indicial functions show a large oscillation at angles of attack beyond the stall angle, but the predictions of a model based on Radial Basis Function matches CFD values quite well.

Keywords:
Reduced order modeling
Unsteady aerodynamics
Computational fluid dynamics
Dynamic stall vortex

Published in: Aerospace Science and Technology  (Volumes 28, Issue 1, July 2013)

Publisher: Elsevier

ISSN Information: 1270-9638

Challenges in the aerodynamics modeling of an oscillating and translating airfoil at large incidence angles

Bình luận của bạn
*
*
*
*
 Captcha

Logo Bottom

Địa chỉ: 268 Lý Thường Kiệt, P.14, Q.10, TP.HCM           Tel: 38647256 ext. 5419, 5420           Email: thuvien@hcmut.edu.vn

© Copyright 2018 Thư viện Đại học Bách khoa Tp.Hồ Chí Minh 

Thiết kế website Webso.vn