Design of the magnetic diagnostics unit onboard LISA Pathfinder

Authors: Marc Diaz-Aguiló, Ignacio Mateos, Juan Ramos-Castro, Alberto Lobo, Enrique García-Berro

Abstract:
LISA (Laser Interferometer Space Antenna) is a joint mission of ESA and NASA which aims to be the first space-borne gravitational wave observatory. Due to the high complexity and technological challenges that LISA will face, ESA decided to launch a technological demonstrator, LISA Pathfinder. The payload of LISA Pathfinder is the so-called LISA Technology Package, and will be the highest sensitivity geodesic explorer flown to date. The LISA Technology Package is designed to measure relative accelerations between two test masses in nominal free fall (geodesic motion). The magnetic, thermal and radiation disturbances affecting the payload are monitored and dealt by the diagnostics subsystem. The diagnostics subsystem consists of several modules, and one of these is the magnetic diagnostics unit. Its main function is the assessment of differential acceleration noise between test masses due to the magnetic effects. To do so, it has to determine the magnetic characteristics of the test masses, namely their magnetic remanences and susceptibilities. In this paper we show how this can be achieved to the desired accuracy.

Keywords:
LISA Pathfinder
Magnetic characteristics
Onboard instrumentation

Published in: Aerospace Science and Technology  (Volumes 26, Issue 1, April-May, 2013)

Publisher: Elsevier

ISSN Information: 1270-9638

Design of the magnetic diagnostics unit onboard LISA Pathfinder

Bình luận của bạn
*
*
*
*
 Captcha

Logo Bottom

Địa chỉ: 268 Lý Thường Kiệt, P.14, Q.10, TP.HCM           Tel: 38647256 ext. 5419, 5420           Email: thuvien@hcmut.edu.vn

© Copyright 2018 Thư viện Đại học Bách khoa Tp.Hồ Chí Minh 

Thiết kế website Webso.vn