Distributed sensor fault diagnosis in a class of interconnected nonlinear uncertain systems

Authors: Qi Zhang, Xiaodong Zhang

Abstract:
In this paper, a distributed sensor fault detection and isolation (FDI) method is developed for a class of interconnected nonlinear uncertain systems. In the distributed FDI architecture, a FDI component is designed for each subsystem in the interconnected system. For each subsystem, its corresponding local FDI component is designed by utilizing local measurements and certain communicated information from neighboring FDI components associated with subsystems that are directly interconnected to the particular subsystem under consideration. Under certain assumptions, adaptive thresholds for distributed sensor fault detection and isolation in each subsystem are derived, ensuring robustness with respect to interactions among subsystems and system modeling uncertainty. Moreover, the fault detectability condition is rigorously investigated, characterizing the class of sensor faults in each subsystem that is detectable by the proposed distributed FDI method. Additionally, the stability and learning capability of the distributed adaptive fault isolation estimators is established. A simulation example of interconnected inverted pendulums mounted on carts is used to illustrate the effectiveness of the distributed FDI method.

Published in: Annual Reviews in Control  (Volume 37, Issue 1, April  2013)

Publisher: Elsevier

ISSN Information: 1367-5788

Distributed sensor fault diagnosis in a class of interconnected nonlinear uncertain systems

Bình luận của bạn
*
*
*
*
 Captcha

Logo Bottom

Địa chỉ: 268 Lý Thường Kiệt, P.14, Q.10, TP.HCM           Tel: 38647256 ext. 5419, 5420           Email: thuvien@hcmut.edu.vn

© Copyright 2018 Thư viện Đại học Bách khoa Tp.Hồ Chí Minh 

Thiết kế website Webso.vn