Fault detection based on robust adaptive thresholds: A dynamic interval approach

Authors:  Sid-Ahmed Raka, Christophe Combastel

Abstract:
A dynamic interval approach for the fast computation of robust adaptive thresholds for a class of uncertain linear systems is the subject of this paper. An extension of recent results about the design of stable interval observers for linear systems with additive time-varying zonotopic input bounds is proposed. It allows the explicit computation of adaptive thresholds ensuring a guaranteed robustness with respect to structured and bounded disturbances which can be not only additive but also multiplicative. Moreover, the constant term (center) of the uncertain time-varying state matrix need not be diagonalizable thanks to results based on a Jordan decomposition. A sufficient condition not only ensuring the stability of the initial uncertain model but also the nondivergence of the computed adaptive thresholds is given. A numerical example dealing with fault detection in an electrical drive illustrates the proposed scheme.

Published in: Annual Reviews in Control  (Volume 37, Issue 1, April  2013)

Publisher: Elsevier

ISSN Information: 1367-5788

Fault detection based on robust adaptive thresholds: A dynamic interval approach

Bình luận của bạn
*
*
*
*
 Captcha

Logo Bottom

Địa chỉ: 268 Lý Thường Kiệt, P.14, Q.10, TP.HCM           Tel: 38647256 ext. 5419, 5420           Email: thuvien@hcmut.edu.vn

© Copyright 2018 Thư viện Đại học Bách khoa Tp.Hồ Chí Minh 

Thiết kế website Webso.vn