Analysis of a structural-aerodynamic fully-coupled formulation for aeroelastic response of rotorcraft

Authors: G. Bernardini, J. Serafini, M. Molica Colella, M. Gennaretti

Abstract:
This paper deals with a computational aeroelastic tool aimed at the analysis of the response of rotary wings in arbitrary steady motion. It has been developed by coupling a nonlinear beam model for blades structural dynamics with a potential-flow boundary integral equation solver for the prediction of unsteady aerodynamic loads around three-dimensional, lifting bodies. The Galerkin method is used for the spatial integration of the resulting differential aeroelastic system, whereas the periodic blade response is determined by a harmonic balance approach. This aeroelastic model yields a unified approach for aeroelastic response and blade pressure prediction, that may conveniently be used for aeroacoustic purposes. It is able to examine configurations where blade–vortex interactions occur. Numerical results show the capability of the aeroelastic tool to evaluate blade response and vibratory hub loads for a helicopter main rotor in level and descent flight conditions, and examine the efficiency and robustness of the different numerical solution algorithms that may be applied in the developed aeroelastic solver. Comparisons among aeroelastic predictions based on different aerodynamic models are also presented.

Keywords:
Computational aeroelasticity
Rotary wing aeroelastic response
Boundary-element-method aerodynamics

Published in: Aerospace Science and Technology  (Volumes 29, issue 1, August 2013)

Publisher: Elsevier

ISSN Information: 1270-9638

Analysis of a structural-aerodynamic fully-coupled formulation for aeroelastic response of rotorcraft

Bình luận của bạn
*
*
*
*
 Captcha

Logo Bottom

Địa chỉ: 268 Lý Thường Kiệt, P.14, Q.10, TP.HCM           Tel: 38647256 ext. 5419, 5420           Email: thuvien@hcmut.edu.vn

© Copyright 2018 Thư viện Đại học Bách khoa Tp.Hồ Chí Minh 

Thiết kế website Webso.vn