Parallel real time computation of large scale pedestrian evacuations

Authors: Armel Ulrich Kemloh Wagoum, Bernhard Steffen, Armin Seyfried, Mohcine Chraibi

Abstract: 
Usually, modeling of the evacuations is done during the planning and authorizing process of office buildings or large scale facilities, where computing time is not an issue at all. The collaborative Hermes project [1] aims at improving the safety of mass events by constructing an evacuation assistant, a decision support system for heads of operation in an actual evacuation. For this, the status (occupancy and available egress routes) of a facility is constantly monitored with automatic person counters, door sensors, smoke sensors, and manual input from security staff. Starting from this status, egress is simulated faster than real time, and the result visualized in a suitable fashion to show what is likely to happen in the next 15 min. The test case for this evacuation assistant is the clearing of the ESPRIT Arena in Düsseldorf which holds 50,000–65,000 persons depending on the event type. The on site prediction requires the ability to simulate the egress in 2 min, a task that requires the combination of a fast algorithm and a parallel computer. The paper will describe the details of the evacuation problem, the architecture of the evacuation assistant, the pedestrian motion model employed and the optimization and parallelization of the code.

Keywords:
Evacuation
Simulation
Real time computation
Force-based model
Parallelization
Visualization

Published in: Advances Engineering Software (Volume 60-61, june-july, 2013)

Publisher: Elsevier

ISSN Information: 0965-9978

Parallel real time computation of large scale pedestrian evacuations

Bình luận của bạn
*
*
*
*
 Captcha

Logo Bottom

Địa chỉ: 268 Lý Thường Kiệt, P.14, Q.10, TP.HCM           Tel: 38647256 ext. 5419, 5420           Email: thuvien@hcmut.edu.vn

© Copyright 2018 Thư viện Đại học Bách khoa Tp.Hồ Chí Minh 

Thiết kế website Webso.vn