Preparation and application of thermosensitive poly(NIPAM-co-MAH-β-CD)/(TiO2-MWCNTs) composites for photocatalytic degradation of dinitro butyl phenol (DNBP) under visible light irradiation

Authors: Hui-Long Wang, Yan Li, Li Pang, Wen-Zhu Zhang, Wen-Feng Jiang

Abstract:
Based on the unique temperature responsive characters of polymeric material based on Nisopropylacrylamide (NIPAM), a capacity for organic molecular inclusion of maleic anhydride (MAH) modified -cyclodextrin (β-CD), and the enhancements in photocatalytic activity of TiO2 doped with multi-walled carbon nanotubes (MWCNTs), the novel thermosensitive poly(NIPAM-co-MAH-β-CD)/(TiO2-MWCNTs) composite photocatalysts were prepared by UV light photoinitiating method. Fourier transform infrared spectra (FTIR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), BET surface area and UV–Vis diffuse reflectance spectra (UV–Vis/DRS) were used to characterize the structure, morphology and composition of the as-prepared composites. Results showed that TiO2-MWCNTs nanoparticles were embedded evenly within the thermally responsive copolymer of NIPAM and MAH-β-CD. The thermoresponsive property ofthe synthesized composites was investigated by using swelling ratio measurements. The photocatalytic performances of the thermosensitive composite catalysts were evaluated for the degradation of 2-sec-butyl-4,6-dinitrophenol (DNBP) solution under visible light irradiation. The effect of operational parameters, i.e. pH of the solution, catalyst concentration, irradiation time, initial DNBP concentration on the photocatalytic degradation efficiency was explored and the results obtained were fitted with modified Langmuir–Hinshelwood model to investigate the degradation kinetics and discussed in detail. The repeatability of photocatalytic activity was also tested. The thermosensitive composite photocatalysts exhibited easy separation and less deactivation after several runs. A plausible mechanism is proposed for the photocatalytic degradation pathway of DNBP. The results of this study showed the feasible and potential use of the thermosensitive composites in photodegradation of organic pollutants by controlling temperature simply.

Keywords:
Titania
Thermosensitive composite
Photocatalyst
Photocatalytic degradation
Alkyl dinitro phenol

Published in: Applied Catalysis B: Environmental (Volumes 130–131, Pages 1-336, 7 February 2013)

Publisher: Elsevier  

ISSN Information: 0926-3373

Preparation and application of thermosensitive poly(NIPAM-co-MAH-β-CD)/(TiO2-MWCNTs) composites for photocatalytic degradation of dinitro butyl phenol (DNBP) under visible light irradiation

Bình luận của bạn
*
*
*
*
 Captcha

Logo Bottom

Địa chỉ: 268 Lý Thường Kiệt, P.14, Q.10, TP.HCM           Tel: 38647256 ext. 5419, 5420           Email: thuvien@hcmut.edu.vn

© Copyright 2018 Thư viện Đại học Bách khoa Tp.Hồ Chí Minh 

Thiết kế website Webso.vn