Shape adjustment of cable mesh antennas using sequential quadratic programming

Authors:  Jingli Du, Yali Zong, Hong Bao

Abstract:
Cable mesh structure is an important way to construct large space deployable antennas. Due to inevitable manufacturing and assembly errors and external environment disturbance, the reflector surface of cable mesh antennas has to be carefully adjusted to achieve required accuracy. This is achieved by altering the length of some cables capable of adjustment. In this paper a shape adjustment procedure based on optimization is presented. A rigorous cable element is first derived, which can treat the cable length variation and the geometric nonlinearity of cable mesh structures. Then the incremental expressions of the reflector surface displacement and the tension exerted on the rim truss are developed, and the surface error is explicitly related to the cable length variation. Finally the shape adjustment procedure is converted into a sequential quadratic programming problem which can effectively reduce the surface error and can be easily solved. A numerical example is presented to demonstrate the feasibility of the method.

Keywords:
Shape adjustment
Cable mesh structures
Deployable antennas
Optimization

Published in: Aerospace Science and Technology  (Volumes 30, issue 1, October 2013)

Publisher: Elsevier

ISSN Information: 1270-9638

Shape adjustment of cable mesh antennas using sequential quadratic programming

Bình luận của bạn
*
*
*
*
 Captcha

Logo Bottom

Địa chỉ: 268 Lý Thường Kiệt, P.14, Q.10, TP.HCM           Tel: 38647256 ext. 5419, 5420           Email: thuvien@hcmut.edu.vn

© Copyright 2018 Thư viện Đại học Bách khoa Tp.Hồ Chí Minh 

Thiết kế website Webso.vn