Simulation of diesel particulate filters in large exhaust systems

Authors: X. Hua, D.W. Herrin, T.W. Wu, T. Elnady

Abstract: 
The transmission loss of silencer systems that incorporate diesel particulate filters (DPF) was predicted using numerical simulation. The model developed by Allam and Åbom, which assumes plane wave propagation, was used to describe the DPF. However, three-dimensional wave propagation was permitted in the airspace upstream and downstream to the DPF. The modeling approach was validated experimentally for a case in which the plane wave cutoff frequency was exceeded in the airspaces upstream and downstream with good agreement. The assumption of plane wave behavior in the DPF was confirmed by modeling 81-cells of a DPF using an acoustic finite element model. The finite element analysis demonstrated that plane wave propagation could be assumed in the DPF regardless of the diameter of the DPF provided that the cross-sectional dimension of a cell is much smaller than an acoustic wavelength.

Keywords:
Diesel particulate filter
Finite element method
Boundary element method
Mufflers

Published in: Applied Acoustics (Volume 74, Issue 12,  December  2013)

Publisher: Elsevier

ISSN Information: 0003-682X

Simulation of diesel particulate filters in large exhaust systems

Bình luận của bạn
*
*
*
*
 Captcha

Logo Bottom

Địa chỉ: 268 Lý Thường Kiệt, P.14, Q.10, TP.HCM           Tel: 38647256 ext. 5419, 5420           Email: thuvien@hcmut.edu.vn

© Copyright 2018 Thư viện Đại học Bách khoa Tp.Hồ Chí Minh 

Thiết kế website Webso.vn